

มหาวิทยาลัยราชภัฏนครปฐม Nakhon Pathom Rajabhat University

Chapter 1

Units, physics and vector quantity. Kittipong Siengsanoh, Ph.D.(Physics)

Physics, Science and Technology Department Nakhon Pathom Rajabhat University **Content 1** Understand the physics of physics quantity and measurement process, Straight motion, Force and Newton's laws of motion, Global gravitation law, Friction balance mechanical of objects, Work and the rules of energy conservation, Momentum and momentum conservation laws, Bending motion. Include the knowledge to use.

Learning Outcome

1. Search and explain the search for knowledge in physics history ,Including the development of the principle and physics concepts that result in new knowledge acquisition and technology development.

2. Measure and report results measurement of physics is correct and appropriate bring the expectation of measurement into consideration. Including experimental results in the graph ,analysis and interpretation of direct graphs.

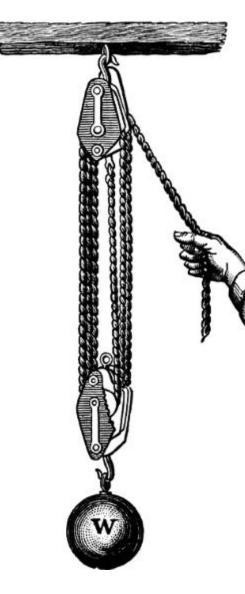
	ts and vector ntity.	Measurement and record
 → Research guide → F → Development and -, 	Physics Experiment	
	→ Reporting Error	-Base units -Derived units
	-Average -Average error	→ Scientific Notation
→ Vector	→ Results Analysis	 → Prefixes → Significant Number
	-Table	
	-Graph	
	Clara	

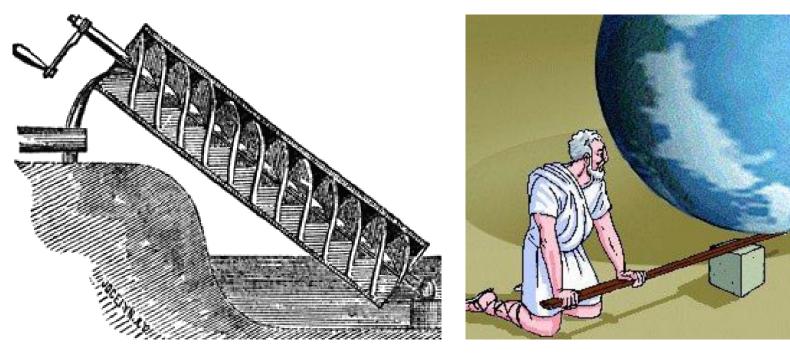
-Slope

Nature of Physics.

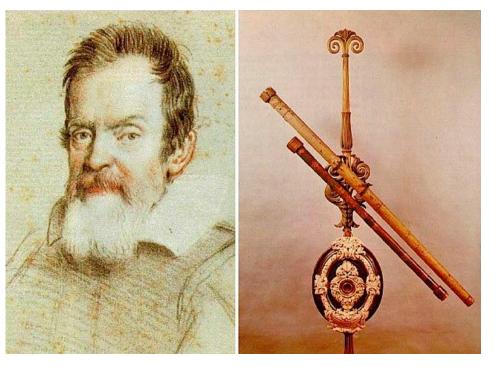
Nature Phenomena.

Nature phenomena.[online]. Available: https://www.thairath.co.th/content/1144912

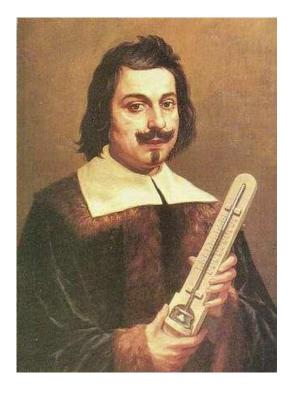

ปรากฏการณ์ธรรมชาติ (ออนไลน์). สืบค้นจาก: <u>http://www.trueplookpanya.com/learning/detail/30092-</u> 042662[1 ธันวาคม 2561]



Nakhon Pathom Rajabhat University



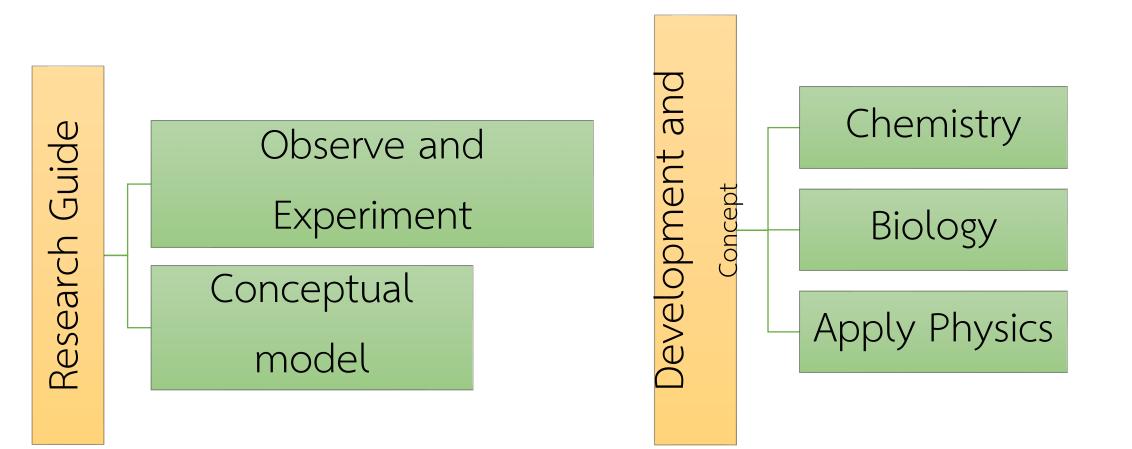
Simple machines.[online]. available: http://ceiinsstt.blogspot.com/2016/08/archimedes.html

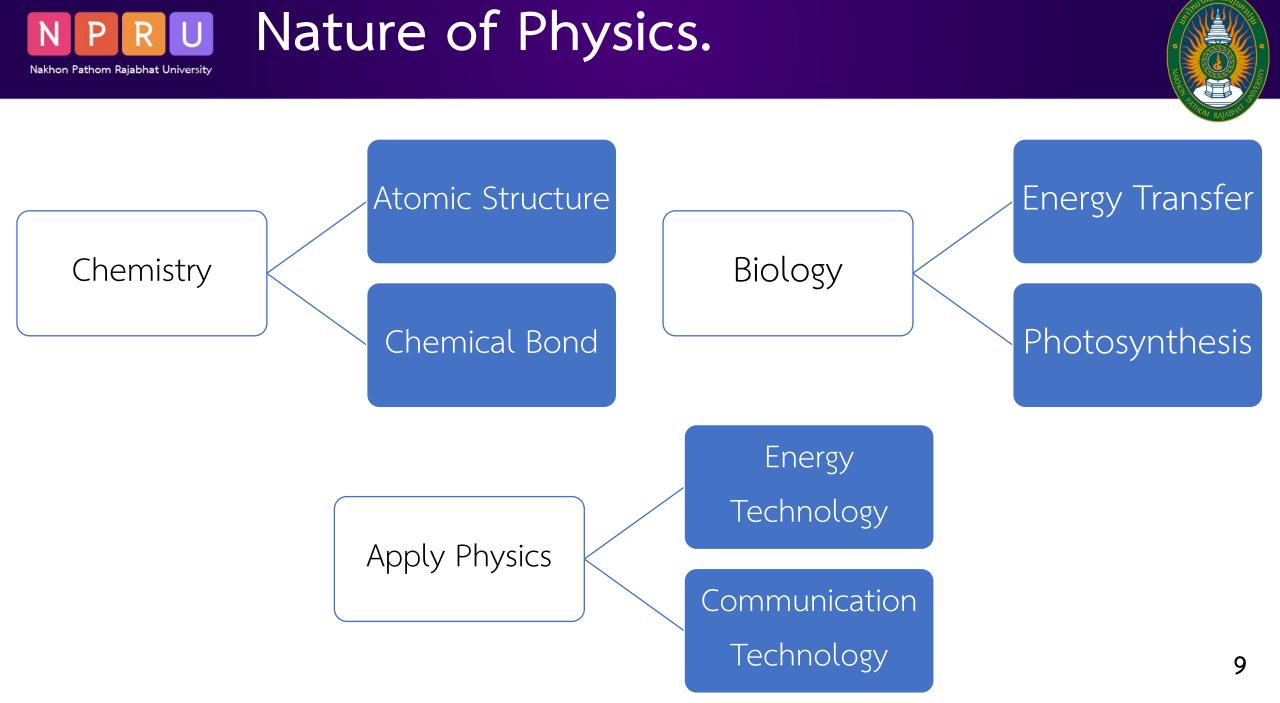

Nature Phenomena

Galileo Galilei :Telescope

Sciencetist. [online]. available:

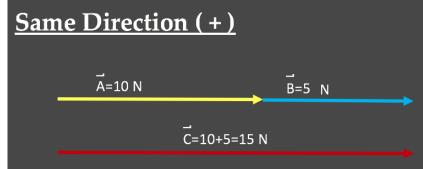
https://yoknoiwong5657.files.wordpress.com/2014/02/galileoandtelescopes cc.jpg

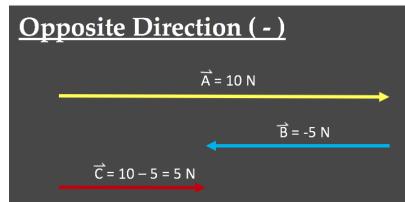



Evangelista Torricelli: Barometer

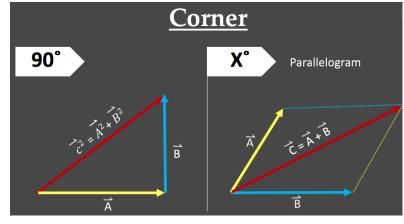
Sciencetist. [online]. Available:

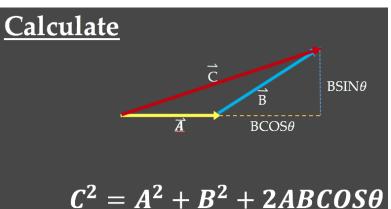
https://web.ku.ac.th/schoolnet/snet3/physician/torricel.htm


"Vectors are quantities that are fully described by both a magnitude and a direction."

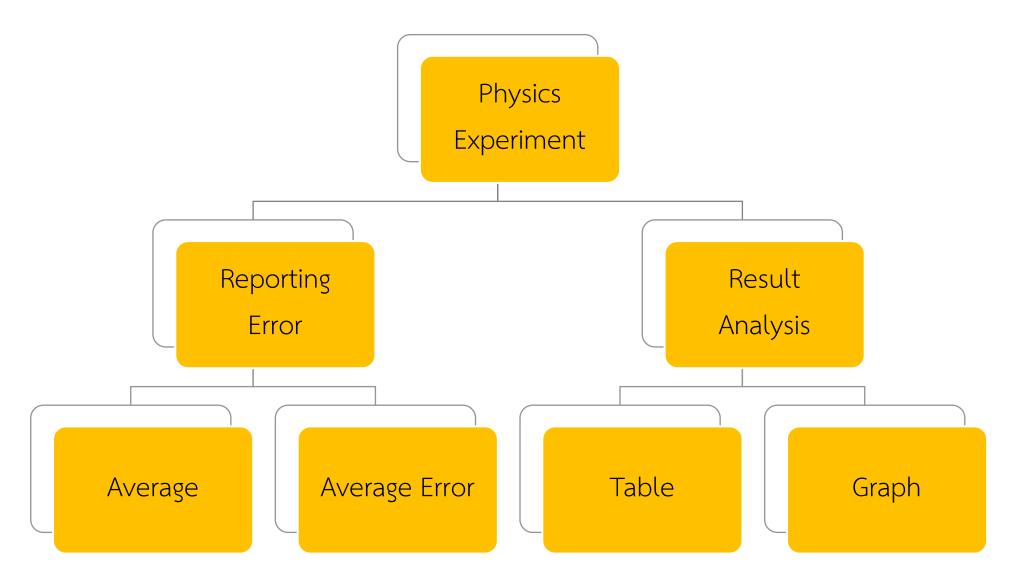

Nature of Physics.

Resultance Vector


- Same direction (+)


- Opposite direction (-)

- Corner


- Calculate

Nakhon Pathom Rajabhat University

- Reporting Error
- Average

$$-X = \frac{X_1 + X_2 + X_3 + \dots + X_n}{N}$$

where

X = Average

- $X_n = \mathbf{X}$ at any number
- N = All test results

Physics Experiment

- Reporting Error
- Average Error

$$\Delta X = \frac{X_{max} - X_{min}}{2}$$

Where

 ΔX = Average error

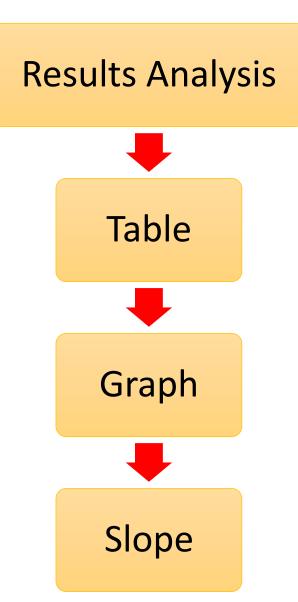
- $X_{max} = Maximum number$
- $X_{\min} = M$ inimum number

Physics Experiment

Reporting Error

EX. x = 21, 23.5, 23.75, 24.10, 24.78, 25.05 Average = ? Average error = ?

• Reporting Error


Solⁿ Average =
$$\overline{\mathbf{X}} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{N}$$

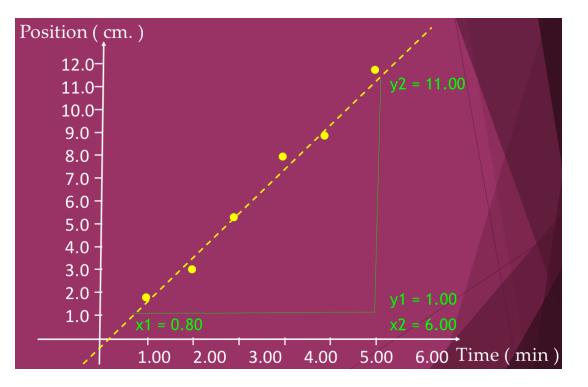
$$=\frac{21+23.5+23.75+24.10+24.78+25.05}{_{6}}$$

= 23.70 #

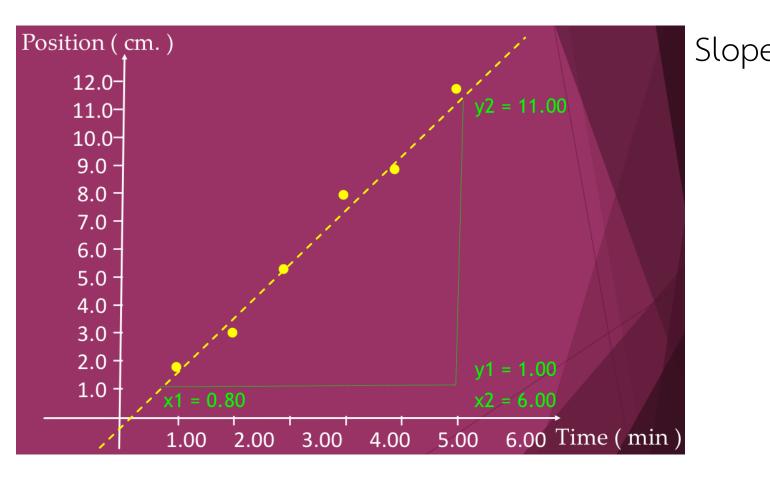
Error average =
$$\Delta X = \frac{X_{max} - X_{min}}{2}$$

= $\frac{25.05 - 21}{2}$
= 2.025 #

Results Analysis



• Results Analysis


Time (min)	Position (cm.)
1.00	1.9 ± 0.2
2.00	3.1 ± 0.2
3.00	5.5 ± 0.2
4.00	8.2 ± 0.2
5.00	9.0 ± 0.2
6.00	11.8 ± 0.2

Ex. Rectilinear motion of a snail.

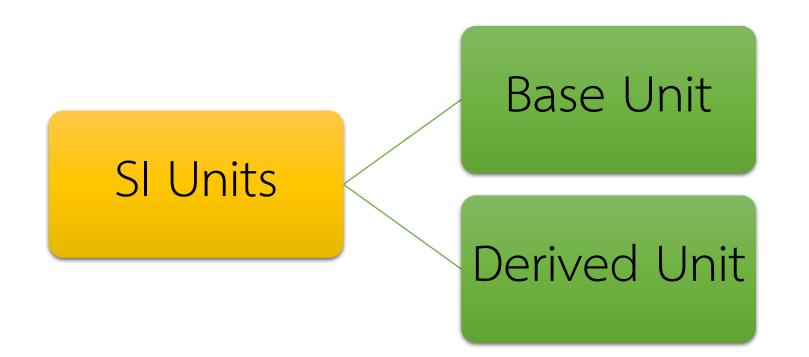
• Results Analysis

$$= = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

$=\frac{11.00 \text{ cm} - 1.00 \text{ cm}}{6.00 \text{ min} - 0.80 \text{ min}}$

= 1.92 cm/min#

Measurement


and

Record.

• International System of Units (S.I.)

• International System of Units (S.I.)

Base Unit

Base quantities	units	symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	Ampere	A
Thermodynamic temperature	Kelvin	К
Amount of substance	mole	mol
Luminous intensity	candela	cd

NPRU Measurement and Record

- International System of Units (S.I.)
- Derived Unit
 - EX. N (Newton)

from
$$F = ma$$

 $F(N), m(kg) and a=?$
 $a : m/S^2$
so $N = kg.m/S^2$

- International System of Units (S.I.)
- Derived Unit

Quantity	Unit	Derived units
Force	Newton (N)	kgms ²
Acceleration	ms ²	ms ²
Energy	Joule (J)	kgm²s¯²
Power	Watt (W)	kgm²s¯³

Scientific Notation

 $\mbox{\ensuremath{\mathsf{A}}} \times 10^n$; $1 \le A \le 10$

EX. $0.000000000001 = 1 \times 10^{-12}$ $1,000,000,000 = 1 \times 10^{12}$

Measurement and Record

Nakhon Pathom Rajabhat University

N

R

Prefixes

Prefixs	symbol	
pico-	р	10 ⁻¹²
nano-	n	10⁻⁹
micro-	μ	10 ⁻⁶
milli-	m	10 ⁻³
centi-	С	10^{-2}
deci-	d	10⁻¹
deca	da	10 ¹
hecto	h	10 ²
kilo-	k	10 ³
mega-	Μ	10 ⁶
giga-	G	10 ⁹
tera-	Т	10 ¹²

Prefixes

EX. Convert the following quantity units.

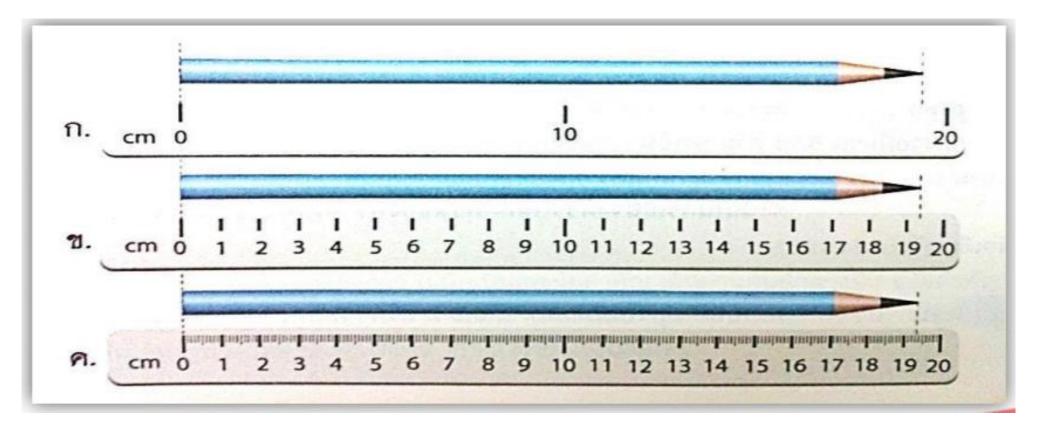
1) $7.0 imes 10^{15}(m$) Change to nanometer (nm)

2) $5.4 imes 10^8$ (W) Change to megawatt (MW)

1) From $1nm = 10^{-9}m$ so that $1m = 10^9$ nm Sol^n $7.0 \times 10^{-15}m$ = ? nm

Prefixes

= $7.0 \times 10^{-15} \times 10^{9}$ nm = $7.0 \times 10^{(-15+9)}$ nm = 7.0×10^{-6} nm ##


2) From $1 \text{ MW} = 10^6 \text{W}$ so that $1 \text{ W} = 10^{-6} \text{ MW}$ Solⁿ $5.4 \times 10^8 \text{W} = ? \text{ MW}$

- $= 5.4 \times 10^8 \times 10^{-6} MW$
- $= 5.4 \times 10^{(8-6)}$ MW
- $= 5.4 \times 10^{2}$ MW ##

Significant Number

เลขนัยสำคัญ (ออนไลน์). สืบค้นจาก: <u>www.trueplookpanya.com/new/download/tv_file/493/ [1</u> ธันวาคม 2561]

- NPRU Measurement and Record
 - Significant Number
 - 1. Numbers 1-9 are significant figures all.

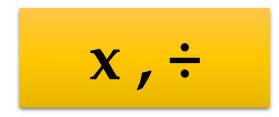
- Significant Number
- 2. Number 0

2.1 Number 0 is in front of other numbers do not count. EX. 0009 = 1 significant figures 2.2 Number 0 is between other numbers do count. EX. 1005 = 4 significant figures 2.3 Number 0 is behind the decimal numbers do count. EX. 0.50 = 2 significant figures 2.4 The number 0 after the integer may be counted or not depending on the resolution of the tool.

> EX. 1899 = 4 significant figures 1.89×10^4 = 3 significant figures



- Significant Number
- 3. Constants such as π e and 2 in $2\pi R$ are not significant figures.


EX. π = 0 significant figures

Significant Number

EX. 250.4 – 75.25 = 175.15 ≈ 175.2

EX. 26.5 \div 4.0 = 6.62 \approx 6.6

The End !!!