CHAPTER 4

ESEARCH METHODOLOGY

ระเบียบวิธีวิจัย

Episode 4.4 Inferential Statistics_(2)

Chi-square test

T-Test

T-TEST

The t-test is used to test the differences in groups of mean

 The t-test can be used when there are two independent groups (e.g., experimental versus control, male versus female) Degree of freedom (df)The degree of freedom (df) describes the number of events or observations that are free to vary.

$$
\begin{aligned}
& \text { Degrees of freedom (df) } \\
& d f=n_{\mathrm{A}}+n_{\mathrm{B}}-2
\end{aligned}
$$

The t-test basic assumption

1. Data are independent.
2. Data are (approximately) normally distributed.
3. Data have a similar amount of variance within each group being compared (homogeneity of variance). \# If data do not fit these assumptions, the researcher can try a nonparametric alternative to the t-test, such as the Wilcoxon Signed-Rank test for data with unequal variances.
(Frederick, Faltin, Kenett \&Ruggeri, 2012)

Type of t-test

One-sample, two-sample, or paired t-test?

1. If there is one group being compared against a standard value (e.g., comparing the acidity of content from the stomach to a pH of 7), perform a one-sample t-test.
2. If the groups come from two different populations (e.g., two different groups), perform a two-sample t-test (independent t-test). This is a between-subjects design.
3. If the groups come from a single population (e.g., measuring before and after an experimental treatment), perform a paired t-test.

This is a within-subjects design.

1. One-sample t-test

One-sample t-test - compares the mean of one group against the specified mean generated from a population.

The formula used to obtain one-sample t-test results is:

Where,
(Frederick, Faltin, Kenett \&Ruggeri, 2012)
t = t-statistic
$\mathrm{m}=$ mean of the group
$\mu=$ theoretical mean value of the population
$s=$ standard deviation of the group
$\mathrm{n}=$ sample size
For example, a researcher wishes to figure out the mean level of the systolic blood pressure of all patients and compare the normal criteria of no more than 139 mmHg .

Print out interpretation

If Sig. from SPSS print out <0.05

Accept H_{1} Reject $\mathrm{H}_{0} \quad$ The mean level of the systolic blood

$$
\mathrm{H}_{0}: \mu 1=139
$$ pressure of all patients was significantly lower than the normal criteria of 139 mmHg . at p -value $<.05$.

$$
\mathrm{H}_{1}: \mu 1 \neq 139, \mu 1>139, \mu 1<139
$$

Table Presentation

Variable	Mean	SD	Criteria	t	P-value
Systolic blood pressure	123	2.40	139	3.325	$<.001^{* *}$

2. An Independent two-sample t-test

An Independent two-sample t-test is used to analyze the mean comparison of two independent groups.

The T-test formula used to calculate this is:

(Frederick, Faltin, Kenett \&Ruggeri, 2012)
Where, $m A-m B=$ means of samples from two different groups or populations
$n A-n B=$ respective sample sizes
s2 = standard deviation or common variance of two samples
For example, if a researcher wants to compare the mean level of the systolic blood pressure of male patients and female patients.

Hypothesis

If Sig. from SPSS print out < 0.05 Accept H_{1} Reject H_{0}

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu 1=\mu_{2} \\
& \mathrm{H}_{1}: \mu 1 \neq \mu_{2}, \mu_{1}>\mu_{2}, \mu_{1}<\mu_{2}
\end{aligned}
$$

Case 1 Equal variances assume

Case 2 Equal variances not assume

Table 2. Comparison of self-care behaviors between the experimental group and the comparison group in the period before and after the experiment using independent t -test $(\mathrm{n}=60)$.

Time	Experimental group $(\mathrm{n}=30)$		Comparison group $(\mathrm{n}=30)$		t	p -value
	M	SD	M	SD		
Before experiment	121.23	11.60	120.57	13.59	0.204	.839
After experiment	145.30	6.90	136.57	14.49	$\mathbf{2 . 9 8 0}$	$\mathbf{. 0 0 5}$

Before the experiment, pregnant women with diabetes in the experimental group and the comparison group had no difference in self-care behavior ($t=0.204$).
After the experiment, pregnant women with diabetes in the experimental group had self-care behaviors higher than the comparison group ($t=2.980$) at statistical significance at the .05 level.
(Pasuwan, Waelveerakup, Tepsuwan, Netpinyo, Chayathab, Wichientanont, 2023)

3．Paired sample t－test

Compares the means of two measurements taken from
the same individuals，objects，or related units．
Compares the means of two measurements taken from
the same individuals，objects，or related units．

The formula used to obtain the t－value is：

Where，
$\mathrm{T}=\mathrm{t}$－statistic
$m=$ mean of the group
＝theoretical mean value of the population
（Frederick，Faltin，Kenett \＆Ruggeri，2012）

$t=\frac{m}{s / \sqrt{n}} \quad$| Where， |
| :--- |
| T$=$ t－statistic |
| |
| $=$ theoretical mean value of the population |
| s |

Compares the means of two measurements taken from
the same individuals，objects，or related units．
et \＆Ruggeri，2012）

都

Abstract

มหาวิทยาลัยราชภัฏนครปฐม
Nakhon Pathom Rajabhat University

$$
\begin{aligned}
& \mathrm{s}=\text { standard deviation of the group } \\
& \mathrm{n}=\text { sample size }
\end{aligned}
$$

 $t=\frac{m}{s / \sqrt{n}}$
 $t=\frac{m}{s / \sqrt{n}}$

 －
L － ． \square

－
E

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\qquad$$\mathrm{T}=\mathrm{t}$－statistic＝theoretical mean value of the population
F ，

都
．


```
號
``` O
\(\qquad\)

\section*{Group Statistics}
\begin{tabular}{|ll|r|r|r|r|}
\hline & SEX & N & \multicolumn{1}{|c|}{ Mean } & Std. Deviation & \begin{tabular}{c}
Std. Error \\
Mean
\end{tabular} \\
\hline SCORE & 1 & 6 & 52.83 & 2.229 & .910 \\
& 2 & 6 & 47.50 & 1.871 & .764 \\
\hline
\end{tabular}

Independent Samples Test

\(H_{0}: \mu_{\text {male }}=\mu_{\text {female }}\) \(H_{1}: \mu_{\text {male }} \neq \mu_{\text {female }}\)
\(P\)-Value \(=\) Sig.(2-tailed) \(=0.001\)

\section*{Example of Table Presentation}

Table 1: Comparison of self-care behaviors before and after the experimental
group and the comparison group using Paired \(t\)-test \((\mathrm{n}=30)\).
Set sig < . 05
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Group & & \multicolumn{2}{|c|}{\begin{tabular}{c}
Before \\
Intervention
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c}
After \\
Intervention
\end{tabular}} & t
\end{tabular} p -value

After the experiment, pregnant women with diabetes in the experimental group and the comparison group had self-care behaviors significantly higher than before the experiment at the .05 level
(\(\mathrm{t}=9.991\) and \(\mathrm{t}=6.018\), respectively) (Table 1).
(Pasuwan, Waelveerakup, Tepsuwan, Netpinyo, Chayathab, Wichientanont, 2023)

\section*{F-test \\ \(=\) \\ \[
\begin{gathered}
\text { F-test } \\
\text { (Anatysis of Variance) } \\
\text { (ANOVA) }
\end{gathered}
\] \\ \\ \\ (Analysis of Variance) \\ \\ \\ (Analysis of Variance) \\ \\ \\ (Analysis of Variance) (ANOVA) (ANOVA) (ANOVA)

 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ }
ge

x

\section*{TYPES of ANOVA}

\section*{One-way ANOVA}

It is used with one independent variable and one dependent variable.

\section*{Two-way ANOVA or Factorial Analysis of Variance}

Factorial analysis of variance permits the investigator to analyze the effects of two or more independent variables on the dependent variable.

(Frederick, Faltin, Kenett \&Ruggeri, 2012)

\section*{ANOVA Assumptions}

There are three primary assumptions in ANOVA: 1. The responses for each factor level have a normal population distribution.
2. These distributions have the same variance.
3. The data are independent.
(Frederick, Faltin, Kenett \&Ruggeri, 2012)

\section*{Hypothesis}

A null hypothesis \((\mathrm{HO})\) :
There is no difference between the groups or means.
An alternative hypothesis (H1):
There is a difference between groups and means.
If Sig. from SPSS print out \(<0.05\) Accept \(\mathrm{H}_{1}\) Reject \(\mathrm{H}_{0}\)
\[
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \\
& H_{1:}: \mu_{1} \neq \mu_{2} \neq \mu_{3}
\end{aligned}
\]

SCORE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{N} & \multirow[b]{2}{*}{Mean} & \multirow[b]{2}{*}{Std. Deviation} & \multirow[b]{2}{*}{Std. Error} & \multicolumn{2}{|l|}{95\% Confidence Interval for Mean} & \multirow[b]{2}{*}{Minimum} & \multirow[b]{2}{*}{Maximum} \\
\hline & & & & & Lower Bound & Upper Bound & & \\
\hline 1 & 4 & 5.00 & . 816 & . 408 & 3.70 & 6.30 & 4 & 6 \\
\hline 2 & 4 & 6.25 & . 957 & . 479 & 4.73 & 7.77 & 5 & 7 \\
\hline 3 & 4 & 8.50 & . 577 & . 289 & 7.58 & 9.42 & 8 & 9 \\
\hline Total & 12 & 6.58 & 1.676 & . 484 & 5.52 & 7.65 & 4 & 9 \\
\hline
\end{tabular}
ANOVA
SCORE
\begin{tabular}{|l|r|r|r|r|r|}
\\
\hline & Sum of & & & \\
\hline Between Groups & Squares & df & Mean Square & F & Sig. \\
Within Groups & 5.750 & 2 & 12.583 & 19.696 & .001 \\
Total & 30.917 & 11 & .639 & & \\
\hline
\end{tabular}

\section*{Multiple Comparisons}

Dependent Variable: SCORE
LSD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) LEVEL} & \multirow[b]{2}{*}{(J) LEVEL} & \multirow[t]{2}{*}{Mean Difference (I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{2}{*}{1} & 2 & -1.25 & . 565 & . 054 & -2.53 & . 03 \\
\hline & 3 & -3.50* & . 565 & . 000 & -4.78 & -2.22 \\
\hline \multirow[t]{2}{*}{2} & 1 & 1.25 & . 565 & . 054 & -. 03 & 2.53 \\
\hline & 3 & -2.25* & . 565 & . 003 & -3.53 & -. 97 \\
\hline \multirow[t]{2}{*}{3} & 1 & 3.50* & . 565 & . 000 & 2.22 & 4.78 \\
\hline & 2 & 2.25* & . 565 & . 003 & . 97 & 3.53 \\
\hline
\end{tabular}
*. The mean difference is significant at the .05 level.

\section*{Example of Table Presentation}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ANOVA} \\
\hline & \begin{tabular}{l}
Sum of \\
Squares
\end{tabular} & df & Mean Square & F & Sig. \\
\hline Between Groups & 6416.293 & 4 & 1604.073 & . 821 & . 519 \\
\hline Within Groups & 87967.727 & 45 & 1954.838 & & \\
\hline Total & 94384.020 & 49 & & & \\
\hline
\end{tabular}

From: https://short.npru.ac.th/5hm

\section*{Thank you \\
 }

 (

 -
 -
 A

都
-

-

\section*{-}

\section*{.}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

