

มหาวิทยาลัยราชภัฏนครปฐม Nakhon Pathom Rajabhat University

CHAPTER 4

RESEARCH METHODOLOGY

ระเบียบวิธีวิจัย

Episode 4.4 Inferential Statistics_(2)

WANPEN WAELVEERAKUP, Asst. Prof. Dr. Email : wanpenw@webmail.npru.ac.th

Inferential Statistics

Chi-square test

T-Test

The t-test is used to test the differences in groups of mean
 The t-test can be used when there are two independent groups (e.g., experimental versus control, male versus female)
 Degree of freedom (df)

The degree of freedom (df) describes the number of events or observations that are free to vary.

Degrees of freedom (df) $df = n_{\rm A} + n_{\rm B} - 2$

- 1. Data are independent.
- 2. Data are (approximately) normally distributed.
- Data have a similar amount of variance within each group being compared (homogeneity of variance).
 # If data do not fit these assumptions, the researcher can try a nonparametric alternative to the t-test, such as the Wilcoxon Signed-Rank test for data with unequal variances.

Type of t-test

One-sample, two-sample, or paired t-test?

- If there is one group being compared against a standard value (e.g., comparing the acidity of content from the stomach to a pH of 7), perform a one-sample t-test.
- If the groups come from two different populations (e.g., two different groups), perform a two-sample t-test (<u>independent t-test</u>).
 This is a between-subjects design.
- If the groups come from a single population (e.g., measuring before and after an experimental treatment), perform a <u>paired t-test</u>.
 This is a within-subjects design.

1. One-sample t-test

One-sample t-test— compares the mean of one group against the specified mean generated from a population.

The formula used to obtain one-sample t-test results is:

Where, (Frederick, Faltin, Kenett & Ruggeri, 2012)

- t = t-statistic
- m = mean of the group
 - μ = theoretical mean value of the population
 - s = standard deviation of the group
 - n = sample size

For example, a researcher wishes to figure out the mean level of the systolic blood pressure of all patients and compare the normal criteria of no more than 139 mmHg.

Print out interpretation

If Sig. from SPSS print out < 0.05								
Accept H ₁	The mean	The mean level of the systolic blood						
$H_{0:} \mu_1 = 139$			lower thar mmHg. at	lower than the normal criteria of 139 mmHg. at p-value <.05.				
$H_{1:} \mu_1 \neq 139,$	$\mu 1 > 139$, μ1 < 2	139		Accept H1			
	Table	e Prese	entation					
/ariable	Mean	SD	Criteria	t	P-value			
Systolic blood pressure	123	2.40	139	3.325	<.001**			

An Independent two-sample t-test is used to analyze the mean comparison of two independent groups.

The T-test formula used to calculate this is:

<i>t</i> –	$m_A -$	m_B
ι –	$\sqrt{s^2}$	$\sqrt{s^2}$
	$\sqrt{n_A}$	$\sqrt{n_B}$

(Frederick, Faltin, Kenett & Ruggeri, 2012)

- Where,
- mA mB = means of samples from two different groups or populations
- nA nB = respective sample sizes
- s2 = standard deviation or common variance of two samples

For example, if a researcher wants to compare the mean level of the systolic blood pressure of male patients and female patients.

Hypothesis

If Sig. from SPSS print out < 0.05Accept H₁ Reject H₀

 $H_{0:} \mu 1 = \mu_2$

 $H_{1:} \mu_1 \neq \mu_2, \ \mu_1 > \mu_2, \ \mu_1 < \mu_2$

Interpretation

มหาวิทยาลัยราชภัฏนครปฐม Nakhon Pathom Rajabhat University

Reject H₁ Accept H₀

Case 1 Equal variances assume

				Independ	lent Sampl	es Test
		Levene's Test Varia	for Equality of ances			
		F	Sig.	t	df	Sig. (2-tailed)
post	Equal variances assumed	.153	.697	1.769	122	.079
	Equal variances not assumed			1.765	116.492	.080

Case 2 Equal variances not assume

	Independent Samples Test								
		Levene's Test Varia	for Equality of ances			1			
		Ľ∕≌⊩	Sig.	t	df	Sig. (2-tailed)			
CLEAR	Equal variances assumed	6.071	.014	136	390	.892			
	Equal variances not assumed			141	372.530	.888			

Table 2. Comparison of self-care behaviors between the experimental group and the comparison group in the

period before and after the experiment using independent t-test (n = 60).

Time	Experimen	xperimental group Comparison group					
	(n =	30)	(n = 30)		t	p-value	
	М	SD	М	SD			
Before experiment	121.23	11.60	120.57	13.59	0.204	.839	
After experiment	145.30	6.90	136.57 14.49		2.980	.005	

Before the experiment, pregnant women with diabetes in the experimental group and the comparison group had no difference in self-care behavior (t = 0.204). **After the experiment,** pregnant women with diabetes in the experimental group had self-care behaviors higher than the comparison group (t = 2.980) at statistical significance at the .05 level.

(Pasuwan, Waelveerakup, Tepsuwan, Netpinyo, Chayathab, Wichientanont, 2023)

3. Paired sample t-test

Compares the means of two measurements taken from the same individuals, objects, or related units.

The formula used to obtain the t-value is:

Where,

- T = t-statistic
- m = mean of the group
- = theoretical mean value of the population
- s = standard deviation of the group
- n = sample size

(Frederick, Faltin, Kenett & Ruggeri, 2012)

Group Statistics

	SEX	N	Mean	Std. Deviation	Std. Error Mean
SCORE	1	6	52.83	2.229	.910
	2	6	47.50	1.871	.764

	Independent Samples Test									
		Levene's Equality of	Test for Variances		\bigcirc	t-test fo	r Equality of N	leans		
									95% Confidence Interval of the	
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Differ Lower	ence Upper
SCORE	Equal variances assumed	.385	.549	4.490	10	.001	5.33	1.188	2.687	7.980
	Equal variances not assumed			4.490	9.709	.001	5.33	1.188	2.676	7.991

$$H_0: \mu_{male} = \mu_{female}$$

$$H_1: \mu_{male} \neq \mu_{female}$$

$$P-Value = Sig.(2-tailed) = 0.001$$

มหาวิทยาลัยราชภัฏนครปฐม Nakhon Pathom Baiabhat University

Table 1: Comparison of self-care behaviors before and after the experimental

group and the comparison group using Paired t-test (n = 30).

Set sig < .05

Group		Before		After				
		Interve	ention	Intervention		t	p-value	
	n	Μ	SD	М	SD			
Experimental	30	121.23	11.60	145.30	6.90	9.991	<.001	
Comparison	30	120.57	13.59	136.57	14.49	6.018	<.001	

After the experiment, pregnant women with diabetes in the experimental group and the comparison group had self-care behaviors significantly higher than before the experiment at the .05 level (t = 9.991 and t = 6.018, respectively) (Table 1).

(Pasuwan, Waelveerakup, Tepsuwan, Netpinyo, Chayathab, Wichientanont, 2023)

มหาวิทยาลัยราชภัฏนครปฐม Nakhon Pathom Rajabhat University

F-test

(Analysis of Variance) (ANOVA)

TYPES of ANOVA

One-way ANOVA

It is used with one independent variable and one dependent variable.

Two-way ANOVA or Factorial Analysis of Variance

Factorial analysis of variance permits the investigator to analyze the effects of two or more independent variables on the dependent variable.

FormulasMEAN SQUARE (MS)F- Ratio
$$MS_B = \frac{SS_B}{df_B}$$
 $MS_W = \frac{SS_W}{df_W}$ $F = \frac{MS_B}{MS_W}$

(Frederick, Faltin, Kenett & Ruggeri, 2012)

ANOVA Assumptions

There are three primary assumptions in ANOVA:

- 1. The responses for each factor level have a normal population distribution.
- 2. These distributions have the same variance.
- 3. The data are independent.

(Frederick, Faltin, Kenett & Ruggeri, 2012)

Hypothesis

A null hypothesis (H0): There is no difference between the groups or means. An alternative hypothesis (H1): There is a difference between groups and means.

> If Sig. from SPSS print out < 0.05Accept H₁ Reject H₀

 H_{0} : $\mu 1 = \mu 2 = \mu 3$

 $H_{1:} \mu 1 \neq \mu 2 \neq \mu 3$

Õ

SCORE

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1	4	5.00	.816	.408	3.70	6.30	4	6
2	4	6.25	.957	.479	4.73	7.77	5	7
3	4	8.50	.577	.289	7.58	9.42	8	9
Total	12	6.58	1.676	.484	5.52	7.65	4	9

SCORE					
	Sum of			_	
	Squares	df	Mean Square	F	Sig.
Between Groups	25.167	2	12.583	19.696	.001
Within Groups	5.750	9	.639		
Total	30.917	11			

ม ty

Multiple Comparisons

Dependent Variable: SCORE

LSD

		Mean Difference			95% Confide	ence Interval
(I) LEVEL	(J) LEVEL	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1	2	-1.25	.565	.054	-2.53	.03
	3	-3.50*	.565	.000	-4.78	-2.22
2	1	1.25	.565	.054	03	2.53
	3	-2.25*	.565	.003	-3.53	97
3	1	3.50*	.565	.000	2.22	4.78
	2	2.25*	.565	.003	.97	3.53

*. The mean difference is significant at the .05 level.

Example of Table Presentation

ANOVA

distancing

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	6416.293	4	1604.073	.821	.519
Within Groups	87967.727	45	1954.838		
Total	94384.020	49			

From: https://short.npru.ac.th/5hm

WANPEN WAELVEERAKUP, Asst. Prof. Dr. Email : wanpenw@webmail.npru.ac.th

Inferential statistics

Chi-square test

t-test

