WEEK 3

Physics of Engineer Chapter 3: Motion

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics

Faculty of Science and Technology

Nakhon Pathom Rajabhat University

PR

Topic 1.2: 1-2 Motion Dimensions.

• One Motion Dimension

• Two Motion Dimension

Let's look at the pictures on next page !

Distance: How far did the point move ?

⁴ (Guide: Think of the cheetah's stride, the runner's lap, the apple's drop.)

Velocity: How fast did the point move ?

⁵ (Guide: The cheetah's blur, the runner's pace, the apple's plummet.)

Acceleration: How quickly did the point change its speed ?

6 (Guide: The cheetah's burst, the runner's final push, the apple's slowing fall.)

Displacement: The total change in position.

Velocity: The rate of change of position

Acceleration: The rate of change of velocity

Displacement (Δx) : The change in position, measured in meters (m).

 $\Delta X = X_2 - X_1$

(where Δx is displacement, x_2 is final position, and x_1 is initial position)

One Dimension Motion : Example

A runner crosses the finish line 100 meters from the starting point.

Solution: Their displacement is $\Delta x = 100$ m.

One Dimension Motion : Example

The runner finishes the 100m race in 10 seconds.

Solution: Their average velocity is v = 100m / 10s

= 10m/s.

One Dimension Motion : Example

The runner starts from rest and reaches their 10m/s velocity in 2 seconds.

Photo: https://www.dreamstime.com/photos-images/running-woman-runner-speed-motion-composite.html

Solution: Their acceleration is a = (10m/s - 0m/s) / 2s

 $= 5 \text{m/s}^2$.

Velocity (v): The rate of change of displacement, measured in meters per second (m/s).

 $\vee = \Delta \times / \Delta t$

(velocity equals displacement divided by time)

(where v is velocity, Δx is displacement, and Δt is time)

Acceleration (a): The rate of change of velocity, measured in meters per second squared (m/s²).

 $a = \Delta v / \Delta t$

(acceleration equals change in velocity divided by time)

(where a is acceleration, Δv is change in velocity, and Δt is time)

Equations for specific cases:

 $\vee = \vee_0 + at$

(final velocity equals initial velocity plus acceleration times time).

Equations for specific cases:

 $\Delta x = v_0 t + 1/2at^2$

(displacement equals initial velocity times time plus half of acceleration times time squared).

Applications:Projectilemotion(throwing a ball), braking distance of
vehicles.

Let's look at the pictures on next page !

Position of an object defined by two independent coordinates:

- X: Horizontal distance
- Y: Vertical distance

Position of an object defined by two independent coordinates:

- X: Horizontal distance
- Y: Vertical distance

The familiar characters return:

Displacement (Δx , Δy):

- Change in position in the X and Y directions.
- Measured in meters (m).
- Equation: $\Delta x = x_2 x_1$, $\Delta y = y_2 y_1$

The familiar characters return:

Velocity (v_x, v_y) :

- Rate of change of displacement in X and Y directions.
- Measured in meters per second (m/s).
- Equation: $v_x = \Delta x / \Delta t$, $v_y = \Delta y / \Delta t$

The familiar characters return:

Acceleration (a_x, a_y):

- Rate of change of velocity in X and Y directions.
- Measured in meters per second squared (m/s²).

• Equation:
$$a_x = \Delta v_x / \Delta t$$
, $a_y = \Delta v_y / \Delta t$

Real Life Example: Projectile Motion.

Equations:

Time of flight (T): $T = 2v_0 \sin\theta/g$ Maximum height (H): $H = v_0^2 \sin^2\theta/2g$ Range (R): $R = v_0^2 \sin 2\theta/g$

Real Life Example: Circular Motion.

Centripetal Acceleration (a_c) :

- Acceleration towards the center of the circle.
- Equation: $ac = \sqrt{2}/r$

Centripetal Force (F_c) :

- Force causing circular motion.
- Equation: $F_c = ma_c = mv^2/r$

Real Life Example: Relative Motion.

Relative Velocity (v_{rel}):

- Velocity of one object relative to another.
- Equation: $v_{rel} = v_1 v_2$ (for objects moving in opposite directions)

Distance (d)

Distance: Combining X and Y

displacements using Pythagorean theorem

Equation: $d = \sqrt{(\Delta x^2 + \Delta y^2)}$

Photo:https://www.istockphoto.com/th/%E0%B8%A0%E0%B8%B2%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/physics-chalkboard

Velocity (v)

Velocity: Adding individual X and Y velocities as vectors

Equation:
$$\vee = \sqrt{(\vee x^2 + \vee y^2)}$$

Photo:https://www.istockphoto.com/th/%E0%B8%A0%E0%B8%B2%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/physics-chalkboard

Acceleration (a)

Acceleration: Calculating the rate of change of both velocities

Photo:https://www.istockphoto.com/th/%E0%B8%A0%E0%B8%B2%E0%B8%96%E0%B9%88%E0%B8%B2%E0%B8%A2/physics-chalkboard

The Journey Continues: Delving Deeper

Further exploration awaits:

- Projectile motion equations
- Circular motion formulas
- Relative motion principles

- Our journey through one-two dimensional motion has unveiled a captivating world!
- From soaring birds to orbiting planets, every movement tells a story governed by fascinating principles.
 Remember, physics isn't just about
 - equations; it's about appreciating the elegance and beauty of how our universe moves.
- ✓ Keep exploring, keep questioning, and keep unveiling the secrets of motion!

WEEK 3

Physics of Engineer Chapter 1: Motion

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics

Faculty of Science and Technology