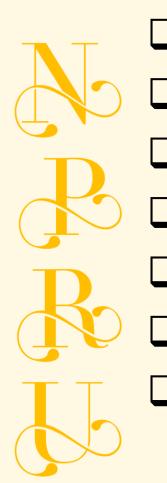


Physics of Engineer Chapter 5: Circular Motion


Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics Faculty of Science and Technology

Outline

Introduction to Circular Motion What is Circular Motion? Describing Circular Motion Kinematics of Circular Motion Dynamics of Circular Motion Applications of Circular Motion Conclusion

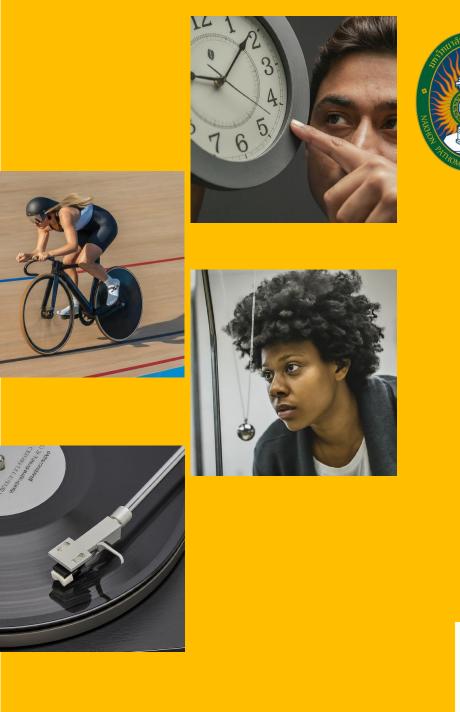
Introduction to Circular Motion: Exploring the Physics of Rotation

What is Circular Motion?

Definition:

Movement of an object along the circumference of a circle or rotation around an axis.

Key Characteristics:


- Constant or changing distance from the center
- Continuously changing direction
- Can be uniform (constant speed) or non-uniform (changing speed)

Describing Circular Motion

- Angular Displacement (θ): Angle swept by the object in radians (2π radians in a full circle).
- Angular Velocity (ω): Rate of change of angular displacement, measured in radians per second (rad/s).
- Period (T): Time taken to complete one full revolution, measured in seconds (s).
- Frequency (f): Number of revolutions per second, measured in Hertz (Hz).
- Relationship:

Kinematics of Circular Motion

- Tangential Velocity (v): Speed of the object along its circular path, measured in meters per second (m/s).
 - Relationship between v and $\boldsymbol{\omega}$: v = $\boldsymbol{\omega}$ r, where r is the radius of the circle.
 - Centripetal Acceleration (ac): Acceleration directed towards the center of the circle, providing the necessary force for circular motion.
 - Relationship between ac, v, and $\boldsymbol{\omega}$: $a_c = v^2/r$ or $a_c = \boldsymbol{\omega}^2 r$

Dynamics of Circular Motion

•Centripetal Force (F_c) : Force acting on the object towards the center, providing the centripetal acceleration.

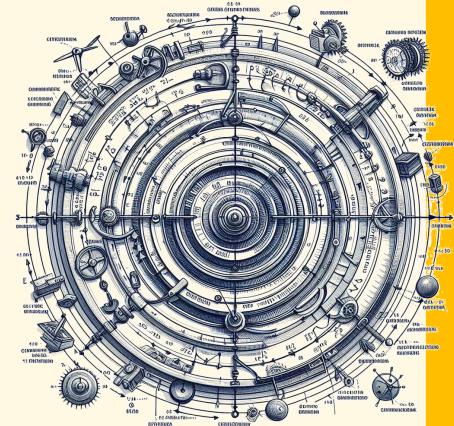
•Examples of Centripetal Forces:

- Tension in a string
- Normal force on a banked track
- Gravitational force in planetary motion
- •Newton's Second Law:

$$F_c = ma_c$$

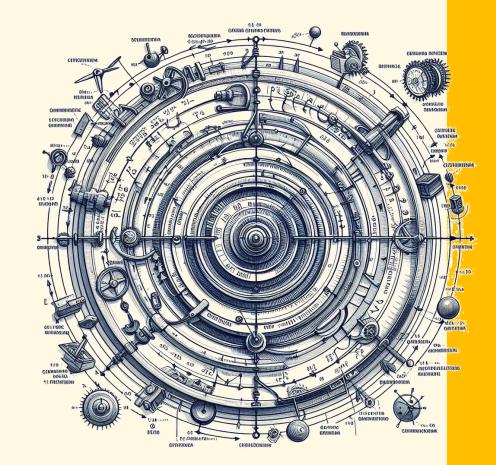
Applications of Circular Motion

- •Amusement park rides (centrifuges, Ferris wheels)
- •Satellites orbiting Earth
- •Planetary motion around the sun
- •Clock hands and gears
- •CD players and turntables
- Washing machines and dryersMany other real-world examples


•Key Definitions: Reiterate the essential terms covered, such as circular motion, circumference, radius , period, frequency, linear velocity, angular velocity, centripetal force, and centripetal acceleration. Briefly explain their meaning and

importance.

•Core Concepts: Summarize the main points discussed in your presentation. This could include concepts like:


- O Relationship between linear and angular velocity (v = ω r)
- O Deriving centripetal acceleration from Newton's second law (F_c = ma)
- O Understanding the role of centripetal force in maintaining circular motion
- O Differentiating between uniform and non-uniform circular motion
- O Illustrating how circular motion principles are applied in real-world examples

•Key Equations: Highlight the main mathematical equations used in circular motion, such as: OT = 1/f and f = $\omega/2\pi$ (relationship between period, frequency, and angular velocity) $OF_{c} = mv^{2}/r$ (centripetal force equation)

•Concluding Remarks: Briefly reiterate the significance of understanding circular motion and its relevance in various fields. You can also encourage students to explore real-world applications further or pose some thought-provoking questions for them to ponder.

Resources and References

- Khan Academy: https://www.khanacademy.org/science/high-school-physics/uniform-circular-motion-and-gravitation-2
- The Physics Classroom: https://www.physicsclassroom.com/Concept-Builders/Rotation-and-Balance/TorqueAndRotation
- HyperPhysics: http://hyperphysics.phy-astr.gsu.edu/

Books:

- Physics for Scientists and Engineers with Modern Physics (4th Edition) by Raymond A. Serway and John W. Jewett Jr.
- Conceptual Physics (12th Edition) by Paul Hewitt
- University Physics (15th Edition) by Ronald A. Taylor and Chris D. Zafiratos

Videos:

- Crash Course Physics: Circular Motion: https://www.youtube.com/watch?v=bpFK2VCRHUs
- MinutePhysics: Angular Velocity vs. Linear Velocity: https://www.youtube.com/user/minutephysics

Activities and Experiments:

- Simulating planets' orbits: https://www.colorado.edu/csl/programs/phet-interactive-simulations
- Building a mini centrifuge: https://www.sciencebuddies.org/stem-activities/bottle-centrifuge
- Analyzing circular motion of a rolling ball: https://www.sjsu.edu/faculty/beyersdorf/Phys50lab/Manual/13-EXPERIMENT%2010.pdf

Physics of Engineer Chapter 5: Circular Motion

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics Faculty of Science and Technology

