

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

"Understanding the Building Blocks of Physical Measurement"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Introduction to Physics
- B. Fundamental Concepts
- C. Units and Measurements
- D. Mass
- E. Volume
- F. Density
- G. Practical Applications
- H. Review and Key Takeaways

What is Physics?

Definition of physics: The study of matter, energy, and their interactions.

Branches of physics: Mechanics, thermodynamics, electromagnetism, optics, quantum mechanics, etc.

Importance in everyday life: From smartphones to medical imaging.

Fundamental Concepts in Physics

Matter and energy: The building blocks of the universe.

Forces and motion: How objects interact and move.

Space and time: The framework in which events occur.

Figure 2: Fundamental Physics Concept

Units and Measurements

Importance of units: Ensuring consistency and reproducibility in scientific measurements.

SI units (International System of Units):

The modern metric system used globally.

Units and Measurements

SI BASE UNITS

0.4

Units and Measurements

Base units: Length (m), mass (kg), time (s), electric current (A), temperature (K), amount of substance (mol), luminous intensity (cd)

Derived units: Formed by combining base units (e.g., force, energy)

Mass

Definition of mass: *The amount of matter in an object.*

Difference between mass and weight: *Mass* is constant, weight varies with gravity.

Units of mass: *kilogram* (*kg*), *gram* (*g*), *milligram* (*mg*)

Figure 4: Mass & Weight Comparison

Mass

Equation: $F = ma \ (Newton's \ Second \ Law)$

where:

F = force (measured in Newtons, N)

m = mass (measured in kilograms, kg)

 $a = acceleration (measured in meters per second squared, m/s^2)$

Figure 5: Mass & Weight Comparison

Measuring Mass.

Measuring Mass.

Balances and scales: *Tools for measuring mass*.

Inertial mass vs. gravitational mass: *Equivalence principle in physics*.

Conservation of mass: *Mass cannot be created or destroyed in chemical reactions.*

Figure 6: Type of balances

Volume.

Volume.

Definition of volume: The amount of threedimensional space occupied by an object.

Forearm Proger

Figure 7: Volume Measurement Methods

Units of volume: $cubic\ meter\ (m^3)$, $liter\ (L)$, $milliliter\ (mL)$

Relationship between volume and dimensions.

Volume.

Equation: $V = l \times w \times h$ (for rectangular objects)

where:

V = volume

1 = length

w = width

h = height

Measuring Volume.

Measuring Volume.

Graduated cylinders: For measuring liquid volume.

Displacement method: For measuring volume of irregular solids.

Figure 8: Volume Measurement Tools

Irregular shapes: *Using water displacement* or 3D scanning techniques.

Density.

Density.

Definition of density: Mass per unit volume of a substance.

Relationship between mass and volume: Density as an intensive property. PP Plastic

Edible oil

Water

Dishwashing liquid

Sugar Syrup

Honey

PE-HD Plastic

ABS Plastic

Corn

Screw

Figure 9: Density Comparison of Materials

Units of density: *kilograms per cubic meter* (*kg/m³*), *grams per cubic centimeter* (*g/cm³*).

Density.

Equation: $\rho = m / V$

where:

```
\rho (rho) = density
```

$$m = mass$$

$$V = volume$$

Practical Applications.

Buoyancy and Archimedes' principle: Objects immersed in fluid experience an upward force.

Material science and engineering: Selecting materials based on density for specific applications.

Practical Applications.

Equation: $FB = \rho fluid \times V \times g$ (Buoyant force)

where:

FB = buoyant force ρ fluid = density of the fluid V = volume of fluid displaced g = acceleration due to gravity (approximately 9.8 m/s² on Earth)

Review and Key Takeaways.

Importance of units in physics: *Ensuring* clear communication and reproducibility in scientific measurements.

Relationship between mass, volume, and density: *Understanding how these* properties interact.

Real-world applications: From designing ships to creating new materials.

Figure 11: Physics Concepts Mind Map

References.

- 1. Halliday, D., Resnick, R., & Walker, J. (2013). Fundamentals of Physics. John Wiley & Sons.
- 2. Serway, R. A., & Jewett, J. W. (2018). Physics for Scientists and Engineers. Cengage Learning.
- 3. Young, H. D., & Freedman, R. A. (2015). University Physics with Modern Physics. Pearson.
- 4. National Institute of Standards and Technology. (2019). The International System of Units (SI). https://www.nist.gov/pml/weights-and-measures/metric-si/si-units

"Understanding the Building Blocks of Physical Measurement"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.