

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Vectors and Scalars in Food Technology

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Distinguish between vector and scalar quantities.
- B. Identify common vector and scalar quantities in food processing.
- C. Apply vector concepts to food technology applications.

What are Scalar Quantities?

- Single numerical value with unit
- Direction not required
- Examples in food technology:
 - Temperature in ovens
 - Mass of ingredients
 - Volume of liquids
 - Pressure in autoclaves

Figure 1: Scalar quantities in cooking

Common Scalar Quantities in Food Processing

Temperature

- Cooking temperatures
- Storage temperatures
- Pasteurization temperatures

Pressure

- Pressure cooking
- Vacuum packaging
- Sterilization pressure

Figure 2: Food processing temperature pressure gauges

What are Vector Quantities?

- Quantities with both magnitude and direction
- Important in food processing equipment
- Examples:
 - Force in mixing operations
 - Velocity in fluid flow
 - Acceleration in centrifuges

Figure 3: Vectors in food machinery

Vectors in Food Processing Equipment

Mixing Operations

- Direction of mixer blades
- Force vectors in dough mixing
- Angular velocity in blenders

Figure 4: *Industrial food mixer vectors*

Vector Applications in Fluid Flow

- Flow direction in pipes
- Velocity profiles in heat exchangers
- Force vectors in pumping systems

Figure 5: Fluid flow vectors food industry

Practice Problems

- 1. Identify vector and scalar quantities in a commercial mixer
- 2. Analyze force vectors in conveyor systems
- 3. Calculate resultant forces in fluid flow

Summary

- Scalars: Temperature, pressure, mass, volume
- Vectors: Force, velocity, acceleration
- Applications in food processing equipment
- Importance in process design

Figure 6: *Physics food technology summary*

References.

- 1. Young, H. D., & Freedman, R. A. (2020). University physics with modern physics (15th ed.). Pearson.
- 2. Singh, R. P., & Heldman, D. R. (2023). Introduction to food engineering (6th ed.). Academic Press.
- 3. Fellows, P. J. (2022). Food processing technology: Principles and practice (5th ed.). Woodhead Publishing.
- 4. Ibarz, A., & Barbosa-Cánovas, G. V. (2021). Unit operations in food engineering. CRC Press.
- 5. Cullen, P. J. (2023). Food mixing: Principles and applications. Wiley-Blackwell.
- 6. Rao, M. A. (2022). Flow and deformation of foods: Fundamentals and applications. Springer.
- 7. Figura, L. O., & Teixeira, A. A. (2021). Food physics: Physical properties measurement and applications. Springer.

Vectors and Scalars in Food Technology

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.