

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Motion in Physics for Food Technology

"Understanding Motion in Food Processing"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Introduction to motion
- B. Basic concepts
- C. One dimensional motion
- D. Equations of 1D motion
- F. Applications in Food Industry (1D)
- G. Two-Dimensional Motion
- H. Projectile Motion
- I. Circular Motion
- J. Real-World Applications
- K. Summary

Introduction to Motion

Content:

- Definition of motion
- Importance in food technology



Figure 1: Food conveyor belt system

Basic Concepts

- •Title: "Fundamental Parameters"
- •Content:
 - \blacksquare Position (x)
 - **■** *Time* (*t*)
 - Velocity (v)
 - Acceleration (a)

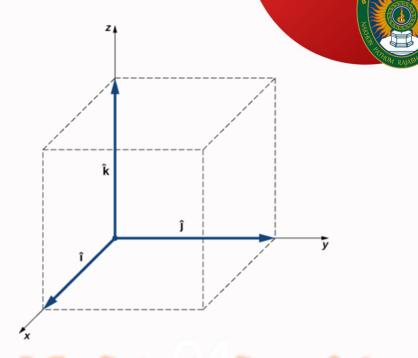


Figure 2: Coordinate system diagram physics

One-Dimensional Motion

- •Title: "Linear Motion in Food Processing"
- •Content:
 - Definition of 1D motion
 - Examples in food industry:
 - ✓ Conveyor belts
 - ✓ Liquid flow in pipes

Figure 3: Linear conveyor system food industry

Equations of 1D Motion

- Title: "1D Motion Applications"
- Content:
 - Continuous flow systems
 - Filling operations
 - Material transport

Figure 4: Bottling line food industry

Applications in Food Industry (1D)

- Title: "Mathematical Description of Linear Motion"
- Content:

$$\mathbf{v} = \mathbf{v}_0 + \mathbf{at}$$

$$= x_0 + v_0 t + \frac{1}{2}at^2$$

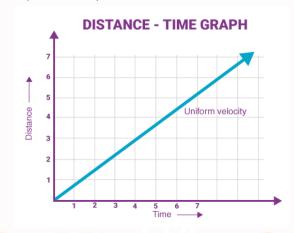


Figure 5: Distance time graph physics

Two-Dimensional Motion

- Title: "2D Motion in Food Processing"
- Content:
 - Definition of 2D motion
 - Vector quantities
 - Examples in food processing

Figure 6: Robotic food sorting system

Projectile Motion

- Title: "Projectile Motion in Food Operations"
- Content:
 - Horizontal and vertical components
 - Applications:
 - ✓ Sorting systems
 - ✓ Dispensing operations

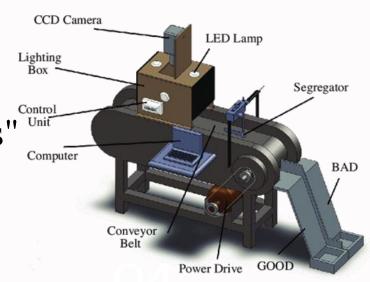


Figure 7: Food particle trajectory sorting

- Title: "Circular Motion in Food Processing"
- Content:
 - Centripetal force
 - Angular velocity
 - Applications:
 - ✓ Centrifuges
 - ✓ Mixing operations

Figure 8: Industrial food centrifuge system

Real-World Applications

- Title: "Industrial Applications"
- Content:
 - Case studies:
 - ✓ Mixing systems
 - ✓ Separation processes
 - ✓ Transport systems

Figure 9: Food processing automation system

Summary

- Title: "Key Takeaways"
- Content:
 - Relationship between 1D and 2D motion
 - Important equations
 - Industrial applications

Figure 10: Modern food processing facility

References.

- 1. Heldman, D. R., & Hartel, R. W. (2018). Principles of Food Processing Engineering. Springer.
- 2. Singh, R. P., & Heldman, D. R. (2014). Introduction to Food Engineering. Academic Press.
- 3. Fellows, P. J. (2017). Food Processing Technology. Woodhead Publishing.
- 4. Young, H. D., & Freedman, R. A. (2020). University Physics. Pearson.
- 5. Ibarz, A., & Barbosa-Cánovas, G. V. (2014). Introduction to Food Process Engineering. CRC Press.
- 6. Saravacos, G., & Kostaropoulos, A. E. (2016). Handbook of Food Processing Equipment. Springer.
- 7. Charm, S. E. (2007). Food Engineering Applied to Accommodate Food Regulations, Quality and Testing. Springer.
- 8. Ahmed, J., & Rahman, M. S. (2012). Handbook of Food Process Design. Wiley-Blackwell.
- 9. Berk, Z. (2018). Food Process Engineering and Technology. Academic Press.
- 10. Singh, R. P., & Heldman, D. R. (2014). Introduction to Food Engineering. Academic Press.

Motion in Physics for Food Technology

"Understanding Motion in Food Processing"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.