

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Newton's Laws of Motion

"Newton's Laws and Their Applications in Food Industry"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Introduction
- B. First law-law of inertia
- C. First Law Applications
- D. Second Law Force and Acceleration
- F. Second Law in Practice
- G. Third Law Action and Reaction
- H. Third Law Applications
- I. Summary

Introduction

- Physics principles govern many food processing operations
- Understanding force and motion is crucial for:
 - Food mixing and blending
 - Fluid flow in pipes
 - Separation processes
 - Material transport

Figure 1: Food processing equipment motion

First Law - Law of Inertia

- •"An object at rest stays at rest, and an object in motion stays in motion unless acted upon by an external force"
- Applications in Food Technology:
 - Mixing of ingredients
 - Separation of particles in centrifuges
 - Transport of food materials on conveyors

Figure 2: Centrifuge separation food industry

First Law Applications

- •Examples in Food Processing:
 - Continuous mixing systems
 - Fluid flow in pipes
 - Particle settling in storage tanks
- •Key Considerations:
 - Product viscosity
 - Flow resistance
 - Material properties

Figure 3: Food mixing system industrial

Second Law - Force and Acceleration

- F = ma (Force equals mass times acceleration)
- Food Industry Applications:
 - Mixing force requirements
 - Pump pressure calculations
 - Material handling systems

NPRU

Second Law in Practice

- Common Examples:
 - Pump pressure for liquid foods
 - Force required for dough mixing
 - Conveyor belt power requirements
- Calculation Example:

Force needed to move 100 kg of flour at 2 m/s^2 : $F = 100 \text{ kg} \times 2 \text{ m/s}^2 = 200 \text{ N}$

Figure 5: Industrial dough mixer

Third Law - Action and Reaction

- "For every action, there is an equal and opposite reaction"
- Applications:
 - Extrusion processes
 - Compression in packaging
 - Impact forces in cutting operations

Figure 6: Food extrusion process

Third Law Applications

- Practical Examples:
 - 1. Extrusion of pasta and snacks
 - 2. Sealing forces in packaging
 - 3. Cutting resistance in food processing

- Design Considerations:
 - Material properties
 - Equipment specifications
 - Safety factors

Summary

- Key Points:
 - Inertia affects mixing and separation
 - Force calculations crucial for equipment design
 - Action-reaction important in processing operations
- Industry Applications:
 - Equipment design
 - Process optimization
 - Quality control

Figure 8: Food processing equipment modern

References.

- 1. Singh, R. P., & Heldman, D. R. (2014). Introduction to Food Engineering. Academic Press.
- 2. Fellows, P. (2017). Food Processing Technology: Principles and Practice. Woodhead Publishing.
- 3. Ibarz, A., & Barbosa-Cánovas, G. V. (2014). Introduction to Food Process Engineering.
- 4. CRC Press. Brennan, J. G. (2006). Food Processing Handbook. Wiley-VCH.

Newton's Laws of Motion

"Newton's Laws and Their Applications in Food Industry"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.