

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Work and Energy in Food Technology

"Physical Principles and Applications"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Basic concepts of work and energy
- B. Energy transformation in food processing
- C. Applications in food technology

Work - Basic Concepts

- Definition: Work is the product of force and displacement
- Mathematical expression:

Force vs Displacement

Figure 1: Force displacement diagram

$$W = F \times d$$

Where: W = Work (Joules, J) F = Force (Newtons, N) d = Displacement (meters, m)

Energy Types in Food Processing

- Mechanical Energy
- •Thermal Energy
- •Electrical Energy
- •Chemical Energy

Figure 2: Energy types food processing

Conservation of Energy

- •First Law of Thermodynamics
- •Mathematical expression:

$$\Delta E = Q - W$$

Figure 3: Thermodynamics food processing

Where: ΔE = Change in internal energy Q = Heat added to system W = Work done by system

Applications in Food Processing

- Mixing and kneading (mechanical energy)
- Heating and cooling (thermal energy)
- Freezing processes
- Drying operations

Figure 4: Food processing operations

Energy Efficiency in Food Industry

- Energy audit concepts
- Energy saving opportunities
- Sustainable processing Common

Figure 5: Energy efficient food processing

Practical Examples

- Case studies:
 - Energy consumption in baking
 - Work done in meat grinding
 - Power requirements in mixing

Figure 6: Food processing equipment energy use

Problem-Solving Example

• Problem: Calculate the work done by a mixing paddle Given:

Force = 50 N

Radius of rotation = 0.3 m

Number of rotations = 100 Solution steps provided

Figure 7: Industrial mixer force diagram

Summary

- Relationship between work and energy
- Important applications in food technology
- Energy efficiency considerations

Figure 8: Food processing overview

References.

- 1. Fundamentals of Food Process Engineering (Singh, R.P., & Heldman, D.R., 2014)
- 2. Physics for Scientists and Engineers (Serway & Jewett, 2018)
- 3. Food Process Engineering and Technology (Berk, Z., 2018)
- 4. Introduction to Food Engineering (Singh & Heldman, 2019)
- 5. Unit Operations in Food Processing (Brennan, J.G., 2016)
- 6. Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes (Varzakas & Tzia, 2016)
- 7. Food Processing Technology (Fellows, P.J., 2017)
- 8. Engineering Properties of Foods (Rao et al., 2014)

Work and Energy in Food Technology

"Physical Principles and Applications"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.