

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Momentum and Collision in Food Processing

"Momentum and Collision Applications in Food Industry"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Understand basic concepts of momentum and collision
- B. Apply momentum principles to food processing operations
- C. Analyze collision types in food manufacturing equipment

What is Momentum?

- Linear momentum (p) = mass (m) × velocity (v)
- SI Units: kg·m/s
- In food processing: Important for:
 - Conveyor belt operations
 - Mixing processes
 - Material handling

Equation: p = mv

Figure 1: Conveyor belt food industry

Conservation of Momentum

- •Total momentum remains constant in an isolated system
- •Before collision = After collision $p_1 + p_2 = p_1' + p_2'$
- •Application:
 - Mixing operations in food processing

Figure 2: Industrial food mixer momentum

Types of Collisions

- 1. Elastic Collision
 - Kinetic energy is conserved
 - Example: Sorting machines for fruits
- 2. Inelastic Collision
 - Some kinetic energy is lost
 - Example: Food packaging impact
- 3. Perfectly Inelastic
 - Collision Maximum energy loss
 - Example: Food compaction

Figure 3: Fruit sorting machine collision

Coefficient of Restitution (e)

- Measures "bounciness" of collision
- $e = -(v_2' v_1')/(v_2 v_1)$
- Where:
 - v_1 , v_2 = initial velocities
 - v_1' , $v_2' = final\ velocities$
- Range: $0 \le e \le 1$
 - e = 1: perfectly elastic
 - e = 0: perfectly inelastic

Figure 4: Food impact testing

Applications in Food Industry

- Impact Forces in:
 - Cutting operations
 - Grinding processes
 - Packaging systems
- Quality Control:
 - Fruit ripeness testing
 - Texture analysis
 - Package integrity testing

Figure 5: Food processing impact testing

Practical Examples

Case Study: Fruit Sorting System

- Momentum principles in:
 - Movement on conveyor
 - Sorting mechanism
 - Impact protection
- Energy considerations for product safety

Figure 6: Automated fruit sorting system

Safety Considerations

- Impact force control in:
 - Material handling
 - Product transfer points
 - Packaging operations
- Minimizing product damage

Figure 7: Food conveyor safety systems

References.

- 1. Singh, R. P., & Heldman, D. R. (2014). Introduction to Food Engineering. Academic Press.
- 2. Fellows, P. J. (2017). Food Processing Technology: Principles and Practice. Woodhead Publishing.
- 3. Barbosa-Cánovas, G. V., et al. (2012). Food Engineering: Integrated Approaches. Springer.

Momentum and Collision in Food Processing

"Momentum and Collision Applications in Food Industry"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.