

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Ideal Gases and Heat in Food Technology

"Ideal Gases and Heat in Food Technology"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Overview of topics to be covered:

- A. Ideal Gas Law
- B. Thermodynamics
- C. Food Processing

Introduction to Ideal Gases

- Definition of Ideal Gas
- Characteristics of Ideal Gases
- Key Assumptions of the Ideal Gas Model

Figure 1: Molecular representation of gas particles in motion

Ideal Gas Law (PV = nRT)

- Detailed breakdown of the equation
 - P: Pressure
 - V: Volume
 - n: Number of moles
 - R: Universal Gas Constant
 - *T: Absolute Temperature*
- •Practical significance in food technology

Figure 2: Graphical representation of gas law variables

Temperature and Its Measurement

- Temperature scales (Kelvin, Celsius, Fahrenheit)
- Conversion formulas
- Importance in food processing

Figure 3: Thermometer types, temperature conversion chart

Heat Transfer in Food Processing

- Conduction
- Convection
- Radiation
- Examples in food technology

Figure 4: Heat transfer types in cooking/processing

- Specific Heat Capacity
- Thermal Conductivity
- Latent Heat
- Practical applications in food preservation

Figure 5: Thermal imaging of different food items

Gas Behavior in Food Technology Volume (m²)

- Pressure effects on food
- Gas expansion and contraction
- Applications in:
 - Packaging
 - Fermentation
 - Cooking processes

Figure 6: Diagrams of gas behavior in food-related scenarios

Practical Applications

- Refrigeration
- Drying processes
- Sterilization
- Vacuum packaging

Figure 7: Collage of food processing technologies

Calculations and Problem Solving

- Sample calculations using Ideal Gas Law
- Step-by-step problem-solving approach
- Real-world food technology scenarios

Conclusion

- Key takeaways
- Importance of understanding thermal principles
- Future innovations in food technology

Figure 8: Futuristic food processing concept

References.

- 1. Specific Physics Textbook for Food Technology
- 2. International Journal of Food Science and Technology
- 3. ASHRAE Handbook of Fundamentals
- 4. Food Engineering Interfaces

Ideal Gases and Heat in Food Technology

"Ideal Gases and Heat in Food Technology"

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.