

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Coulomb's Law and Electric Fields in Food Technology

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Introduction to Electrical Phenomena
- B. Fundamental Concept Electric Charge
- C. Coulomb's Law Basic Principles
- E. Electric Fields in Food Systems
- F. Practical Applications in Food Technology
- G. Electric Charge Interactions in Food Molecules
- H. Case Study Electrostatic Technologies in Food Processing
- I. Mathematical Modeling
- J. Conclusion and Future Perspectives

Introduction to Electrical Phenomena

- What are electrical charges?
- Importance in food technology
- Basic electrical properties of matter

Figure 1: Atomic structure

Fundamental Concept - Electric Charge

- •Definition of electric charge (Q)
- •Types of charges: Positive and Negative
- •Basic unit: Coulomb (C)
- •Fundamental equation:

Q = number of electrons × elementary charge

Figure 2: Charge distribution

Coulomb's Law - Basic Principles

Mathematical representation:

$$F = k(q_1q_2/r^2)$$

Where:

- F = Electrostatic force
- k = Coulomb's constant (8.99×10^9) $N \cdot m^2/C^2$
- q1, q2 = Magnitude of charges
- r = Distance between charges

Figure 3: Force between charges

Electric Fields in Food Systems

- Definition of electric field
- Equation: E = F/Q
- Applications in food processing:
 - Electrostatic precipitation
 - Food particle separation
 - Moisture control

Figure 4: Electrostatic technology

Practical Applications in Food Technology

- Electrostatic spraying in food preservation
- Charge interactions in food packaging
- Moisture and particle behavior in food processing

Figure 5: Food preservation technology

Electric Charge Interactions in Food Molecules

- Protein charge interactions
- Ionic bonding in food systems
- Electrostatic stabilization of emulsions

Figure 6: Protein structure

Case Study - Electrostatic Technologies in Food Processing

- Electrostatic coating of foods
- Particle separation techniques
- Moisture control mechanisms

Figure 7: Food processing technology

Mathematical Modeling

- Advanced Coulomb's Law calculations
- Computational methods in food science
- Simulation of charge interactions

Figure 8: Mathematical modeling

Conclusion and Future Perspectives

- Emerging technologies
- Research directions
- Interdisciplinary applications

Figure 9: Future food technology

References.

- 1. University of California, Davis Food Science Department
- 2. Fennema, O. R. (2007). Food Chemistry, CRC Press
- 3. Halliday, D., & Resnick, R. (2013). Fundamentals of Physics
- 4. Jackson, J.D. (1999). Classical Electrodynamics
- 5. Barbosa-Cánovas, G.V. (2009). Food Engineering Processes
- 6. Rahman, M.S. (2007). Handbook of Food Preservation
- 7. Damodaran, S. (2008). Fennema's Food Chemistry
- 8. Sun, D.W. (2012). Emerging Technologies for Food Processing
- 9. Welty, J.R. (2008). Fundamentals of Momentum, Heat, and Mass Transfer

Coulomb's Law and Electric Fields in Food Technology

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.