

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Magnetic Fields and Faraday's Law

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Introduction to Magnetic fields
- B. Magnetic Fields in Food Industry Applications
- C. Faraday's Law of Induction
- E. Applications in Food Processing
- F. Electromagnetic Induction in Food Quality Testing
- G. Safety Considerations
- H. Review & Key Points

Introduction to Magnetic Fields

- A magnetic field is a region where magnetic forces can be detected
- Represented by magnetic field lines (B)
- Unit: Tesla (T)
- Key properties:
 - Lines never cross
 - Direction: North to South pole
 - Density indicates field strength

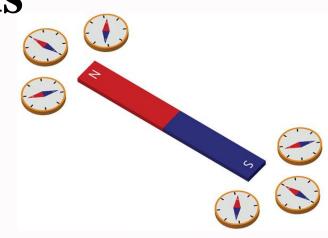


Figure 1: Magnetic field lines compass

Magnetic Fields in Food Industry Applications

- Metal detection systems
- •Magnetic separation of contaminants
- Quality control processes
- Food packaging inspection



Figure 2: Magnetic metal detector food industry

Faraday's Law of Induction

• The fundamental equation:

$$\varepsilon = -N(\Delta\Phi/\Delta t)$$

Where:

- ε (epsilon) = induced electromotive force (EMF) in volts (V)
- N = number of turns in the coil
- $\Delta\Phi$ (delta phi) = change in magnetic flux
- $\Delta t (delta \ t) = change \ in \ time$
- Negative sign indicates Lenz's law

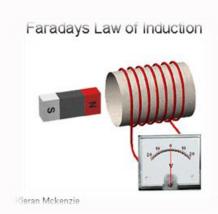


Figure 3: Faraday's law of induction diagram

Applications in Food Processing

1. Induction Heating

- Rapid heating
- Energy efficient
- Precise temperature control

2. Common Applications:

- Sealing systems
- Sterilization equipment
- Package heating

Figure 4: Induction heating food processing

Electromagnetic Induction in Food Quality

Testing

- Non-destructive testing methods
- Metal detection systems working principle
- Contamination detection
- Quality assurance processes

Figure 5: Electromagnetic food testing equipment

Safety Considerations

- Magnetic field exposure limits
- Equipment shielding requirements
- Operating procedures
- Industry standards compliance

Figure 6: Electromagnetic safety food industry

Review & Key Points

- Magnetic field basics
- Faraday's law fundamentals
- Industrial applications
- Safety protocols
- Quality control implementation

Figure 7: Electromagnetic applications food industry summary

References.

- 1. Young, H. D., & Freedman, R. A. (2020). University Physics with Modern Physics (15th ed.). Pearson.
- 2. Serway, R. A., & Jewett, J. W. (2018). Physics for Scientists and Engineers (10th ed.). Cengage Learning.
- 3. Fellows, P. J. (2017). Food Processing Technology: Principles and Practice (4th ed.). Woodhead Publishing.
- 4. Halliday, D., Resnick, R., & Walker, J. (2021). Fundamentals of Physics (12th ed.). Wiley.
- 5. Sun, D. W. (2019). Electromagnetic Fields in Food Engineering: Fundamentals and Applications. CRC Press.
- 6. Muelaner, J. (2022). Measurement Technology and Intelligent Instruments in Food Quality Testing. Springer.
- 7. World Health Organization. (2023). Environmental Health Criteria: Electromagnetic Fields. WHO Press.

Magnetic Fields and Faraday's Law

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.