

Fundamental Physics for Food Technology and Innovation (4011106)

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics.
Faculty of Science and Technology.

Physics of Light in Food Technology and Innovation

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.

Overview of topics to be covered:

- A. Understanding Light Basic Concepts
- B. The Electromagnetic Spectrum
- C. Light Interaction with Food Materials
- E. Color in Foods
- F. Measuring Light Properties in Food
- G. Applications in Food Quality Assessment
- H. Light-Based Food Processing
- I. Advanced Applications
- J. Safety Considerations
- K. Future Trends

Understanding Light - Basic Concepts

- Light as electromagnetic radiation
- Wave-particle duality
- Visible spectrum (380-700 nm)
- Key parameters: wavelength, frequency, Speed
- Equation: $c = \lambda f$

where:

• c = speed of light $(3 \times 10^8 \text{ m/s}) \lambda$ = wavelength (m) f = frequency (Hz)

Figure 1: Light wave characteristics diagram

Light Interaction with Food Materials

- •Reflection
- •Transmission
- Absorption
- Scattering

Figure 2: Light interaction with food materials

Color in Foods

- Physical basis of color
- Primary and secondary colors
- Role of pigments
- Color spaces (RGB, Lab*)

Figure 3: Food color measurement CIE Lab

Measuring Light Properties in Food

- Spectrophotometry basics
- Colorimeters
- Glossmeters
- UV-Vis spectroscopy

Figure 4: Food spectrophotometer measurement

Applications in Food Quality Assessment

- Color measurement
- Freshness determination
- Ripeness assessment
- Defect detection

Figure 5: Optical food quality assessment

Light-Based Food Processing

- UV sterilization
- IR heating
- Photo-oxidation
- Light-induced degradation

Figure 6: UV sterilization food industry

Advanced Applications

- Machine vision systems
- Hyperspectral imaging
- NIR spectroscopy

Figure 7: Hyperspectral imaging food quality

Safety Considerations

- UV exposure limits
- Laser safety
- Protection methods
- Regulatory standards

Figure 8: Light safety food processing

Future Trends

- Smart packaging
- Novel sensing technologies
- LED applications
- Artificial intelligence integration

Figure 9: Smart food packaging light indicators

References.

- 1. Nielsen, S. S. (2017). Food Analysis (5th ed.). Springer.
- 2. Berns, R. S. (2019). Principles of Color Technology (4th ed.).
- 3. Wiley. Sun, D. W. (2016). Computer Vision Technology for Food Quality Evaluation. Academic Press.
- 4. Fellows, P. J. (2017). Food Processing Technology: Principles and Practice (4th ed.). Woodhead Publishing.

Physics of Light in Food Technology and Innovation

Kittipong Siengsanoh (Ph.D.Physics)

Department of Physics. Faculty of Science and Technology.